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Recent investigations into the development of molecular orientation on straining in the glass transition range 
and above (e.g. refs. 1 and 2) have led to interpretation of results in terms of rubber elasticity theory, 
discrepancies being accounted for via a strain-dependent entanglement molecular weight. It has been shown 
recently that experimental orientation functions can also be adequately described by a model involving two 
components of strain (extensional and orientational)3; nevertheless, it might be wondered whether part of the 
above-mentioned discrepancy could stem from an inadequacy of the rubber-elasticity theory in the case of 
short-chain molecules, i.e. chains in which the number of statistical segments is too small for statistical 
methods to apply. This work was undertaken in order to compare orientation functions obtained using 
alternative models with those derived from classical theories. 
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INTRODUCTION 

The theory of orientation functions in rubbery networks 
of long chains is well established. In this theory, the 
orientation function (P2.> of the statistical segments with 
respect to the principal strain directions is obtained by 
convolution of the orientation function (C2,) of statistical 
segments with respect to end-to-end vectors of strands 
joining crosslinks with that (P2n) of end-to-end vectors 
with respect to the principal strain directions 4. C2, relates 
to the most probable orientation distribution, which was 
obtained by Kuhn and Griin for long-chain molecules, in 
which the probability distribution of end-to-end lengths is 
given by the Langevin function 6. 

Experimental data on rubbers, ancl on thermoplastics 
in the rubbery state, can be fitted to the random-chain 
affine result only by allowing the number of statistical 
segments per chain to depend on strain and 
temperature L2. Various two-parameter theories have 
been proposed (e.g. refs. 3 and 7), giving a more adequate 
description of experimental results. However, an 
alternative possibility exists that the source of the 
inadequacy of the classical theory lies in the fact that 
Kiihn and Griin's approximation is valid only for long 
chains. Intuitively, one expects short chain behaviour to 
lie somewhere between the random-chain affine and 
pseudo-affine limits, which is precisely the situation for 
experimental data. (In the pseudo-affine model, the 
anisotropic unit rotates like a rigid rod in an affinely 
deforming isotropic matrix.) The purpose of this paper is 
to model short-chain behaviour using hopefully more 
appropriate models than the Langevin approximation. 

First, as shown by Treloar a, the Langevin 
approximation does not give a correct description of the 
probability distribution of end-to-end distances in the 
case of short chains. The orientation distribution derived 
from Treloar's 'exact' distribution for short chains 9 will 
first be compared with the classical solution. 

An alternative approach is to consider a real chain with 
fixed valence angles, and look for a relationship between 
the orientation distribution and the chain length in terms 
of the internal rotation angle. The resulting orientation 
function, obtained using an approximation to 
Volkenstein's relations for real chains 1°, will also be 
compared with classical theory. 

Discussion will be restricted to the second moment of 
the orientation distribution, which is appropriate for 
birefringence. 

GENERAL THEORY 

In this section, Roe and Krigbaum's theory of orientation 
functions will be outlined, and its limitations and possible 
extensions discussed. 

Consider a structural unit, anisotropic in a material 
property, p. The orientation of the axis of the structural 
unit can be defined in a reference frame, fixed in the 
sample, by polar coordinates (0,q~). An additional 
coordinate • defines the orientation of the structural unit 
about its axis. (Coordinates 0, 4) and q~ are simply the 
Euler angles defining a reference frame fixed in the 
structural unit with respect to a reference frame fixed in 
the sample.) Sample anisotropy will depend on anisotropy 
of the structural unit and on the orientation distribution. 

If the property p is a tensor (e.g. polarizability, sonic 
modulus, thermal expansivity), the contribution of each 
structural unit to the macroscopic anisotropy will depend 
on the products of the direction cosines defining the 
structural unit; in other terms, the macroscopic 
anisotropy is determined by an average of second-order 
spherical harmonics over the orientation distribution. 
For other properties, (n.m.r. second moment, polarized 
fluorescence, Raman spectroscopy) the contribution of 
each structural unit can be expressed in terms of squares 
of spherical harmonics, or of linear combinations of 
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spherical harmonics of order 0, 2 and 4. In general, 

2n + 1 

0 - 1  

where flcos0Ab) is the orientation distribution of the 
structural units. 

The structural unit chosen by Roe and Krigbaum* is 
the average strand joining crosslinks in a rubbery 
network. In this case, the spherical harmonic 
PT'z (cos0)exp(- imdp) appearing in equation (1) is replaced 
by an expansion, in terms of spherical harmonics, of the 
distribution of orientations of segments with respect to 
the strand's end-to-end vector; the coefficients of the 
expansion are: 

2n + 1 

CT '= f fg ( cosO ,c~ , cos~ ,$ )PT ' ( cos~ )exp ( - im '$ )dcos~d$  

o - ,  (2) 

where g(cos0,~b,cos~,~,) is the distribution function of 
orientations of segments (defined by ~,ff), about the end- 
to-end vector defined by 0,q~. 

Roe and Krigbaum restrict their attention to the 
situation where both the sample and the strand exhibit 
transverse isotropy. In this case 9 becomes independent 
both of ~b and ~k, so that the integrals in equations (1) and 
(2) vanish except when m and m'=0; equivalently, the 
spherical harmonics reduce to Legendre polynomials of 
order l, and the distribution functions are independent of 
~b and ft. In this case equation (1), for the second moment, 
reduces to: 

+ 1  

Pz = f C2(cosOff(cosO)(3c°s20- l-)dcosO 
-1 

(3) 

where C2(cos0) is the coefficient of the second-order 
Legendre polynomial in the expansion of the distribution 
of segmental orientation. A solution is obtained when: 

(a) the end-to-end vectors F joining crosslinks undergo 
an affine transformation: 

and 

23 

f l c o s 0 )  - 2(23 _ c 0 s 2 0 ( 2 3  _ 1))3,/2 (4) 

r 2 
ro (23_c0s20(23_ 1))1/2 (5) 

(b) the end-to-end distance r 0 in the unstrained state is 
equal to the root-mean-square length of the free chain: 

r0=M/  

where 1 is the length of a statistical segment and N the 
number of segments per strand; 

(c) the segmental orientation distribution is given by 
Kuhn and Griin's equationS: 

fl S g(cos0,cos~) = ~ x p ( f l c o  ~) (6) 

where 

1 r 2 
c°thf l -  fl = ~ = (N(23 _ cosZ0(23 _ 1)))1/2 (7) 

On introducing equation (5) into equation (2), the 
following expression is obtained for the second-order 
orientation function, averaged over all segments in a 
strand: 

3t  
c2  = 1 - - -  (8) 

= 0.6t + 0.2t 4 + 0.2t 6 (9) 

where Treloar's approximation (equation (9)) is accurate 
to within 1% xl. On introducing this expression into 
equation (1): 

--10"6//22 1~ 0.2 f 4 2 4 '~ 

0.2 l/ 6 "Jl" 323 8 ) 
+ 7 - ~ \  2 5 5~ -3 

(lO) 
/ 

The reader is referred to refs. 4 and 5 for expressions for 
higher-order orientation functions. 

The major limitation of Roe and Krigbaum's treatment 
is that it is restricted to the case of transverse isotropy, 
both of the sample and of the structural unit. Since the 
purpose of the present work is to evaluate the validity of 
the Langevin approximation, this is not a serious 
restriction. Solutions have been obtained for a more 
general deformation, and applied to birefringence 12 and 
to broadline n.m.r? 3. 

Another restriction is that equation (10) would appear 
to apply only if the orientation of segments in a strand is 
given by the Kuhn and Griin equation. In fact, equation 
(9) is quite general, and its solution is of the form given by 
equation (10) whenever the orientation function can be 
expressed as 

C2 = at 2 + bt 4 + ct 6 (11) 

The coefficients in equation (10) are simply replaced by 
a/32~, b/52 4 and c/726 respectively, where 2M is the 
maximum extension of the chain (i.e. the extension at 
which C2 = 1). 

ORIENTATION FUNCTIONS FOR SHORT 
CHAINS 

n freely-jointed segments 
It has been shown by Treloar 7 that the Langevin 

approximation for the probability density of end-to-end 
lengths r ceases to be a useful approximation when the 
number of segments is small (less than 25). If the limiting 
extension is identified with N ~, the validity of equation (10) 
for polymers having a natural draw ratio of 2.5 or even less 
is questionable. 

In this section, an expression for C2 will be obtained 
from Treloar's 'exact' distribution of lengths for short 
chains. 
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Consider a strand of end-to-end vector ~:, made up of n 
statistical segments o_f length l. The projection of a link 
onto the unit vector 1, is: 

OX = lcosct 

where c~ is the angle between the link and the end-to-end 
vector. We are interested in the probability of finding OX 
between x and x + dx, subject to the condition that the 
length of the end-to-end vector be O R. Referring to Figure 

OX OR 
1, and introducing reduced coordinates x = T ,  r = l ' 

LR 
p = ~ - ,  the following probabilities can be defined: 

(i) f,(xlr)dx, that the projection of a given segment fails 
between x and x+dx ,  subject to the condition that the 
end-to-end length of the strand of n segments is r; 

(ii) f,(r)dr, that the end-to-end length of the strand is 
between r and r + dr, irrespective of direction; 

(iii) p(x)dx is the fi priori probability that x will fall 
between x and x + dx. 

The probability that the projection of a given segment 
(represented as the first in Figure 1) will be x, and that the 
end of the strand Z will be found in an elemental volume 
d V about R can be found in two ways: it is the probability 
of finding OR/l between r and r + dr, of finding OR inside a 
cone defined by dS = dV/dr on the sphere of radius r and 
centre O, and of finding OX/l between x and x + dx subject 
to the condition that the strand's length is r. It is also the a 
priori probability of finding OX/l between x and x + dx, 
and at the same time of having the end-to-end length of 
the n -  1 remaining segments between p and p + dp, the 
direction being defined by dS' =dV/dp on the sphere of 
radius p and centre L. This is expressed by: 

sS' dS 
p(x)dxf._l(p)dP 4~p2=f.(xlr)dxf.(r)dr 4rtr 2 (12) 

O 

L 
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Figure 1 Defini t ion of geometr ical  variables used in der ivat ion of 
probabi l i ty  dis t r ibut ion of  or ien ta t ions  
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Since the a priori probability is isotropic, 

p(x) =½ (Ixl < 1) 

=0 (Ixl)> 1) 
(13) 

and, taking into account that d V= dS'dp = dSdr, 

f. . . . .  J. - t (p)dx r 2 
~xlrjax= ~f~(~ ~5 (14) 

Referring to Figure 1, it can be seen that 

o r  

and 

p2  = ( r _  X)2 + 1 - x  2 

r 2 + 1 _p2 
X = 

2r 

dx = - P-do 
r 

(15) 

(16) 

and finally 

flxlr)dx =f" -  1 (p)dp r 
2f.Irl 

(17) 

Treloar's distribution function isS: 

[ n - r  \n-2 

f .  (r) = ~ o  ( -  ly  (n - s)!st(n - 2)! (18) 

where k is an integer defined by 

k ~ n - [ ~ k + l  (19) 
2 

This distribution is applicable for a chain of n freely 
rotating segments. 

The second-order orientation function of the statistical 
segments with respect to the end-to-end vector is: 

+1 
_ _ 3 ( X  2 )  - - 1  ["  3X 2 -  1 

C2 f (x lr )dx  3 2 2 
-1  

r + l  
3 ~ (r2+l-p2)Zrfn_l(p)dp 1 

(20) = - -  

J 4 4r2pf,(r) 2 
r - 1  

Introducing equation (18) into equation (20) it can be 
shown, after some tedious but elementary algebra, that: 

s T  ) 6 ) ' V  ( - 1 ) n ' [ -  A~-'  {r 2 \ 2A"~[3r 2 
C2 = 1 - ~ -  g . . , ~  r ( ~ = o ( n - s ) . s . L ~ r ~ n  - 1 ) +  n ~ . "  ~ - - 1  

24A7+ l r 

(n+ 1)! n 

n + 2  k s 1 n - 2  

4- n(n + 2)! J)  /~=o(n - s)!s! (n - 2)! 

/ / m r  

where A s=- 2 - s. 

Equation (21) is plotted in Figure 2 for various values of 
n, together with the long-chain approximation, equation 
(8). The resulting variation of the global orientation 
function P2 with draw ratio is given in Figure 3. It can be 
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Figure 2 Plot of orientation factor C2 versus fractional extension t. A, 
( ) Langevin approximation, equation (8); B, ( . . . .  -) rotational 
isomer model, equation (30); Treloar's distribution, equation (21); C, 
(- . . . .  ) n=2 ;  D, ( - - - )  n=3 ;  E, ( - - - - - )  n = 6  

seen that, even for very short chains, the result obtained 
using Treloar's distribution is not fundamentally different 
from that obtained using Kuhn and Griin's distribution. 

n, rigid segments with fixed valence angles 
It might be objected that the very concept of the 

statistical segment breaks down for very short chains, and 
that the analysis in the previous section might well be 
irrelevant. 

In this section the orientation function will be found for 
chains formed of n, rigid segments with fixed valence 
angles @ and internal rotation angle ~b (n, is not equivalent 
to the number of n of statistical segments per chain). This 
model is, hopefully, more realistic than the preceding one. 

The anisotropy of a segmental property p and the 
average end-to-end length are given by Volkenstein9: 

A 6cos*_ 2 ~,.1 +rlf PI+P3~ 
p = + t,e' 2 ] 

2y Pl 

where ~ =cos¢ ,  y =cos2¢,  Pl is the value of the property 
along the segment axis, P2 and P3 are its values transverse to 
the segment axis. If free rotation of the segment about its 
axis can be assumed, effective transverse isotropy is 
obtained and: 

[-6cos¢ 2 ~.,i +r/ , f y 

(23) 

where Ptl and Pi are the values p takes respectively parallel 
and perpendicular to the segment axis. 

The end-to-end distance r is given by: 

r2 = nrl2 ~ + cosll  ~ 1 + q 
- cos@ 1 - r/ 

(24) 

Expressions (23) and (24) are both approximations, valid 
only at low extensions (i.e. low q). Better approximations 
for r 2 are given by Volkenstein, but none are valid over a 
useful range of ~/for short chains (i.e. n, < 500). The exact 
expression for r 2 is, to say the least, unmanageable. Also, 
no better approximation than equation (22) is given for 
the chain anisotropy. In order to obtain a relationship 
between anisotropy and extension ratio, the following 
empirical expressions are used, which reduce to equations 
(23) and (24) at low draw ratios, 

Ap=Apl(1-r/x") and r2=r2(l_qX,) (25) 

where Apl and r l  z are given by equations (23) and (24) and 
x= and x, will be found below in order for equations (25) to 
give the correct values of anisotropy and length at full 
chain extension. 

In order for a relationship to be obtained between Ap 
and r from equations (25), a relationship is required 
between y and ~/. This relationship will, of course, depend 

0.2 

X~m,,-'4 
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i S 

I 
I 
i 
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l 

I 
/ 
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# 
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oF ~ l I 
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X 
Figure 3 Average orientation function v e r s u s  global extension ratio. 
( ) Langevin approximation, equation (10); ( - - - )  Treloar's 
distribution, from equation (21); ( - - - - - )  rotational isomer model, 
equation (31) 
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on the distribution of internal rotation angles. Assuming 
tetrahedral bond angles (cos~=½), and restricting 
accessible rotational isomers to one trans (cos~= 1, 
weight f )  and two 9auche (cos~ = -½, with equal weights 

3f+ 1 3 f -  1 and y = (26) 
~/= 2 4 

and the anisotropy and end-to-end length can be 
expressed in terms of the fraction of trans conformers as: 

20(1 ~ - +  3 ~  \ - x, (Ppl- P±) 

(27) 

2 , ,  ,2 l + 3 f / 1  (28) 

n, 2n2,12 
When f = l ,  Ap=~-(pll-p±) and r 2 -  3 ' giving: 

r l  r n r 
x, = 3--.-.g and x ,=~-  (29) 

On eliminating f between equations (27) and (28), a 
relationship between C2 = Ap/Apmax and t = r/rmax can be 
found for a given n,. This relationship is evaluated for 
n,=20, which corresponds to the number of rigid 
segments between entanglements in polycarbonate 
(Me=2500, monomer=258, two rigid segments per 
monomer). This choice was made in order to compare 
results with those of the preceding section. Most other 
polymers have entanglement molecular weights 
corresponding to several hundred rigid bonds, or in other 
terms, a 'statistical segment' is made up of several 
monomers. The relationship between C2 and t is then 
indistinguishable from the inverse Langevin expression, 
equation (8). 

For n, = 20, elimination of f between equations (27) and 
(28) gives a relationship which is numerically very close 
to :  

C 2 = 0.45t 2 + 0.425t 4 + 0.125t 6 (30) 

(In the region of interest, the absolute error is less than 
0.003 and the relative error is generally better than 1~o.) 

The second-order orientation function is then: 

= 0, l f f j  2 __ ~ )  ..}_ 0 ,085f  4 L 4 "~ P2 +g-3-y) 

0.125//26 3,~ 3 8 ) 
+ ?~--~a~ Jr 5 52 -a (31) 

This expression is compared with those derived from 
Treloar's distribution and from the inverse Langevin 
distribution in Figure 3, taking 2~x =6. The resulting 
orientation functions can be seen to be remarkably close 
to each other. 
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DISCUSSION 

It might appear somewhat unexpected that three 
fundamentally different models should yield such similar 
representations of the development of orientation on 
stretching. The reasons for this behaviour are several. 

First, the orientation function C 2 for a single chain 
obtained using Treloar's distribution of end-to-end 
lengths is itself remarkably close to that derived from the 
inverse Langevin function, for as few as six statistical 
segments, although the probability distributions of end- 
to-end lengths are themselves quite dissimilar. This can be 
understood in the following manner. 

A chain of end-to-end length r is made up of n segments 
of length l; let c( be the angle between any individual 
segment and the end-to-end vector. The following 
equations then hold: 

r 
--=cost(  (32) 
nl 

3COS2Gt -- 1 3(COS~t) 2 + 30 .2 -- 1 
C2 2 2 (33) 

where 0.2 is the variance of the distribution of cos~. The 
upper and lower bounds for C2 at a given cos~ will now be 
sought following Bower's method 14. The lower limit for 
C2 is obtained for 0.2 = 0, corresponding to n = 2 (only one 
value of ~ compatible with the given end-to-end distance). 
The upper limit is obtained when cos~= _+ 1, i.e. all 
segments lying either parallel or antiparallel to the end-to- 
end vector, giving C2= 1 for any r. In principle, the 
relationship between t and C2 could lie anywhere between 
these extremes. In practive, however, limitations on 
accessible configurations, resulting in a narrow 
distribution and low variance, will be unimportant except 
for very small n; and extreme configurations giving a high 
variance usually have a low weight unless n is very small. 
For example, when n = 3 and r = 1, one segment is parallel 
to the end-to-end vector and the other two are parallel to 
each other. The orientation distribution is bimodal, 
resulting in a maximum in variance at this point. 
(Incidentally, this includes configurations in which the 
first segment lies along the end-to-end vector, and the 
other two fold back on each other; this is an impossible 
configuration in a real chain. Clearly, segments are not 
indistinguishable at this level. In this sense, Treloar's 
distribution is no more 'exact' than the Langevin 
'approximation'.) At high extensions, few configurations 
are accessible so that all distributions merge. The most 
probable orientation function will thus be fairly 
insensitive to details of the configurational model. 

On averaging C2 to obtain the global orientation 
function P2, the largest contribution comes from those 
chains with the highest draw ratios: these chains have a 
high weight (probability proportional to 63 , where the 
local extension ratio 6 is given by equation (5)) and are 
strongly oriented towards the draw direction, (factor 
(3x 2 - 1)/2), so that the effect of differences in segmental 
orientation functions, which are preponderant only at low 
extensions, is further reduced. The resulting orientation 
functions are therefore very similar, whatever the model, 
even for very short chains. 

This means that the Langevin approximation and the 
concept of a statistical segment are both 'useful', even for 
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extremely limited chain extensibilities. Just how useful 
will now be discussed. 

The orientation-strain relationship obtained using 
Treloar's 'exact' distribution has been shown above to be 
close to that derived from the Langevin approximation; 
however, the probability distributions of end-to-end 
lengths are quite dissimilar. This means that the variation 
of entropy with strain obtained with the Langevin 
approximation will probably be in error for short chains: 
although orientation-strain relationships derived from 
the Langevin approximation are probably acceptable, 
stress-strain and oreintation-stress relationships are 
unlikely to be useful. 

Whether a better description of stress-strain behaviour 
can be derived from Treloar's 'exact' distribution is, 
however, open to question: in chains made up of freely 
rotating 'statistical segments' strain can be accom- 
modated not only by rotation of segments, but also by 
extension of the segments themselves. The statistical 
segment is equivalent to a certain number of real links, t he 
number being chosen so that orientations of successive 
segments are uncorrelated. On straining a real chain, the 
probability distribution of internal rotation angles is 
altered at all bonds, so that the 'statistical segment' cannot 
be thought of as rigid. Also, as pointed out above, 
Treloar's distribution includes some impossible 
configurations, with a non-negligible weight in the case of 
very short chains. Clearly, a strong decrease in orientation 
with increasing draw ratio as obtained in the case of three 
freely rotating segments using Treloar's distribution, is 
physically unrealistic. 

It might at first sight appear preferable to model the 
behaviour of the chain as a whole, as outlined in the 
section dealing with 'nr rigid segments with fixed valence 
angles'. In fact, the underlying hypotheses are extremely 
restrictive: equations (23) and (24) are valid only if there is 
no correlation of internal rotation angles between 
successive bonds; very low extensions cannot be reached 
if only three conformations are allowed; and the upper 
range of extension ratios can be covered only by using an 
interpolation formula whose sole justification is that it 
reduces to the correct expressions at both ends. Since the 
resulting orientation falls slightly below the theoretical 
lower limit at high extension ratios, it is evidently too low 
(this would imply a negative variance, which is, of course, 
impossible). A realistic model with coarse, albeit 
inevitable, approximations will evidently do no better 
than a rigorous solution to an approximate model. These 
limitations are relatiyely unimportant for the orientation 
function because the major contribution comes from the 
region where the approximations are most likely to be 
adequate; it is, however, unlikely that a useful expression 
for the entropic force can be derived. 

In conclusion, then, the description of the orientation- 
strain behaviour is insensitive to details of the 
conformational model; this is a consequence of the 
averaging procedure. On the other hand, it appears 
unlikely that any available model can give a realistic 
detailed description of stress-strain behaviour. 

One point remains to be discussed: how well do any of 

the models given above describe orientation data in real 
polymers ? This point will not be discussed in detail, as 
work in this field will be published shortly. As shown by 
Brown and Mitchell 15'16, experimental behaviour of 
rubbers, or of PMMA in the rubbery state, can be fitted 
to the description resulting from the Langevin approxi- 
mation only by using a strain-dependent value of n, the 
number of segments between entanglements or crosslinks. 
This adjustment is required because of the initial 
downward curvature of the orientation-strain curve. All 
models given in this paper give a positive curvature, so 
that refining the mathematics does not appear to be able 
to improve the description of behaviour of real polymers. 
The basic assumptions of the random chain affine model 
require reassessment: either deformation of end-to-end 
vectors is not affine, or chain conformation between 
entanglements (crosslinks) is not random. Mitchell 17 has 
successfully applied Brown and Windle's two-component 
model 3 to orientation-strain behaviour of crosslinked 
rubbers; an alternative model, applicable to the glassy 
state, will be compared with experiment in a following 
paper. 

CONCLUSIONS 

Two models of orientation-strain behaviour have been 
presented as alternatives to the Kuhn and Griin model in 
the case of short chains. The resulting orientation-strain 
relationships are very close to the Langevin 
approximation, which is therefore a valid approximation 
for random-chain affine behaviour even for chains having 
extremely limited maximum extension, and which is 
preferable to the alternative models in view of its 
mathematical simplicity. The non-applicability of the 
Kuhn and Grfin theory to real chains does not stem from 
the Langevin approximation itself, but from inadequacy 
of the hypothesis of random chain affine deformation. 
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